A bound for matrix norm

We wish to better the bounds for the norm of a matrix {M = (k(i,j))} with scalar entries when it defines a linear map with from {l^p} to {l^p}, that is the series ,

\displaystyle  Mx(i) = \sum_{j=1}^\infty k_{i,j} x(j)

is convergent for each {i} and {Mx \in l^p}. The standard bounds for matrix norm given in the text for {p \geq 2}, are {\alpha_1^{1/p} \alpha_\infty^{1/q}} and {\beta_p}, for {l^p} spaces. We give yet another bound using the power mean inequality:

1. Power Mean Inequality :

Consider positive weights {p_k}, {k = 1, 2, \ldots, } which have total mass {p_1 + p_2 + \ldots= 1}, then for nonnegative real numbers {x_k}, {k = 1, 2,\ldots } and for all {-\infty < s < t < \infty} one has

\displaystyle  (\sum_{k=1}^\infty p_k x_k^s)^{1/s} \leq (\sum_{k=1}^\infty p_k x_k^t)^{1/t} \ \ \ \ \ (1)

2. Bound for matrix norm

Consider,

\displaystyle  \begin{array}{rcl}  \left | \left | Mx \right | \right |_p^p &= \sum_{i=1}^\infty \left|\sum_{j = 1}^\infty k_{i,j} x(j) \right |^p \\ &\leq \sum_{i=1}^\infty \left( \sum_{j=1}^\infty \left |k_{i,j} x(j) \right | \right )^p \\ &= \sum_{i=1,r_i \neq 0}^\infty r_i^p \left ( \sum_{j=1}^\infty \left |\frac{k_{i,j}}{r_i} x(j) \right | \right )^p \end{array}

where for some fixed {s > 0} and {s <= 1}, {r_i = \sum_{j=1}^\infty |k_{i,j}^{s}|}.

\displaystyle  \begin{array}{rcl}  \left | \left | Mx \right | \right |_p^p & \leq \sum_{i=1, r_i \neq 0}^\infty r_i^p \left ( \sum_{j=1}^\infty \frac{\left |k_{i,j}^{s} \right |}{r_i} \left|k_{i,j}\right|^{1-s}\left| x(j) \right | \right )^p \end{array}

Now we use power mean inequality with {\alpha=1} { and } {\beta = p}, { p_k = \frac{|k_{i,j}^{s}|}{r_i}} { and } {x_k = | k_{i,j}^{1-s} x(j)|}. So,

\displaystyle  \begin{array}{rcl}  \left | \left | Mx \right | \right |_p^p &\leq \sum_{i=1,r_i\neq 0}^\infty r_i^p \sum_{j=1}^\infty \left | \frac{|k_{i,j}^{s}|}{r_i} k_{i,j}^{p(1-s)}x(j)^p \right | \\ &= \sum_{i=1}^\infty\sum_{j=1}^\infty r_i^{p-1}\left | { k_{i,j}^{s+p(1-s)}} \right | \left|x(j)\right|^p \\ & = \sum_{j=1}^\infty \left|x(j)\right|^p \sum_{i=1}^\infty r_i^{p-1}\left | { k_{i,j}^{s+p(1-s)}} \right | \\ \end{array}

Now if we take,

\displaystyle  \gamma_s = \sup_j \left \{ \sum_{i=1}^\infty r_i^{p-1} \left| k_{i,j}^{s + p(1-s)}\right| \right \}^{1/p}

Then we have {Mx \leq \gamma_s \left| \left | x \right |\right |_p}. So we have infinite number of bounds for the norm as we vary {s} among positive reals (of course, not all values of {s} might be useful )

Example : Consider the matrix

\displaystyle  A = \begin{pmatrix} 1 & 1/2^{3} & 1/3^3 & \ldots \\ 1/2 & 1 & 0 & \ldots \\ 1/3 & 0 & 1 & \ldots \\ \vdots & & & \vdots \\ \end{pmatrix}

For this matrix {\alpha_1 = \infty} and {\beta_2} is also infinity, however {\gamma} is finite with {s =1/2}. This is because {\sup_i r_i = \sum_n (1/n^3)^{1/2} < \infty } and {\sup_{i} \sum_{j=1}^n k_{i,j}^{(2+1)/2} =\sum_{j=1}^n 1/n^{3/2} < \infty}. Thus {\gamma_{2} \leq \sup_i r_i \sup_i \sum_{j=1}^n k_{i,j}^{3/2} < \infty}.

You can further see that {\gamma_s} is a better bound than {\alpha_\infty^{1/q}\alpha_1^{1/p}} always, since if we take {s = 1} and {r = \infty}, we have

\displaystyle  \sup_j \sum_{i=1}^\infty r_i^{p-1} \left|k_{i,j}^{s + p(1-s)}\right| = \sup_i {r_i^{p/q}} \sup_j \sum_{i=1}^\infty \left |k_{i,j}\right| \leq \alpha_\infty^{p/q} \alpha_1,

where we have used the fact that {p-1 = p/q}.


Leave a comment